

PROJECT CASE HISTORY - Classic Collisions Workshop

COOLROOF COATINGS – Core Function

Due to their large surface area and exposure, Roof Surfaces capture enormous amounts of the suns energy and thus COOL ROOFS offer potential cooling energy savings of 20-40%*, resulting in direct cost and green house gas emission savings

❖ Dulux® InfraCOOL™ technology works by maximising TOTAL SOLAR REFLECTION including the (invisible) infra-red portion of the suns energy which accounts for over 50% of the suns total solar energy

PROJECT INFORMATION

Project Name:

Classic Collision Resto Centre

Workshop areas

ROOF AREA:

700m2

Location:

45 Cranwell St

Braybrook Vic 3019

Application Date:

November 07, 01, 2010 (completion)

Project Aspect: Flat Deck Roof Structure – MAXIUMUM SOLAR ABSORPTION

PROJECT OBJECTIVES & SCOPE

Improve

Productivity, (Reduce Early Finishes & Equipment Hire Cost) Worker & Customer Comfort, enable the use of amenities.

The area is a large open work shop that is not serviced by any air-conditioning. On frequent high temperature days working conditions became unbearable and workers where sent home early

EXTERNAL ROOF:

Uncoated Weathered

zinculume flat deck

With sisilation

COATING SPECIFICATION

Surfaces – Zinculume generally in good condition with no corrosion.

 $\mbox{``Flat''}$ deck sections provided adequate run-off to prevent water ponding.

Surface Preparation	High Pressure Wash
PRIMER	Dulux MetalShield Etch Primer
HEAT REFLECTIVE MEMBRANE	Dulux COOLROOF Cool Roof White with InfraCOOL™ Technology

Classic Collisions Workshop – PREDICTED BENEFITS

PROJECT EVALUATION

Minimisation of heat gain requires a preliminary understanding of the dynamics of heat flow and transfer as defined by :

Heat transfer through a solid object

(eg heat we can feel by touch on a surface and for which insulating measures are typically suitable)

Radiation:

Direct transfer of heat from one object to another without heating the airspace between (eq. Solar energy transmitted by the Sun for which REFLECTIVE measures are most effective)

- Minimising heat gains requires a barrier designed appropriately to negate the specific heat source.
- In Australia and most other climates, the prominent source of heat gain is Radiant (ie Suns Solar rays) with up to 93% of a buildings heat gain in summer attributable to Radiant heat

Key coating performance criteria for minimising the absorption of Radiant Heat

- REFLECT Heat in the FIRST INSTANCE before heat absorption & therefore before insulation is effective
- ❖ >90% Total Solar Reflection (TSR) is optimal for maximum cooling effect
- Must have low dirt pick-up, to maintain reflectance for maximum cooling
 - Accumulation of dirt / mould can reduce effectiveness by up to 70%

ASTM E1980-01: SOLAR REFLECTANCE INDEX

The following comparative test data (based on constant solar conditions) demonstrates the predicted surface temperature cooling benefit using Dulux[®] InfraCOOL™ technology in the specified Project System in the pre-existing Project environment.

Wind condition ..

-	-	ā	00		53	130		ž.	10.00	
8	ord	1	30	lar.	K	en	ec	Ld	nce	:

% TSR ASTME903 or C1549 Reflectance of the suns energy across the broad solar spectrum

visible region

(colour relevant)

non visible region

(Infra-red) 0-1 scale, ASTM C1371

Thermal Emittance The ability of a material to release captured heat energy

Solar Reflectance Index

relevant to wind conditions

Surface Temperature

constant air temperature : 37C constant Solar flux: 1000 W/m2

InfraCOOL™ effect

potential surface temp. COOLING

	ux [®] AcraTo L ROOF W		Weathered GALVANIZED SURFACE				
	90.0%		30 – 35 %				
	0.90		0.26				
low	medium	high	low	medium	high		
113.4	113.46	113.52	-35.52	-2.7	17.39		
41	40	38	124	84	58		

20 - 44°C COOLER

High to medium wind condi

ASTM E903: SOLAR ABSORBANCE

TSR and Spectral Reflectance is tested in accordance with ASTM E-903

% Reflectance of both versions is reported at individual wavelengths from 200-2500 nanometers

Results:

- TSR (Total Solar Reflectance) increased 44 from 30% to 90% (200% increase) with InfraCOOL TM
- Reflectance increase across the both the visible spectrum (300-700nm) and most significant portion of the Infra-red spectrum (700-1800nm).

Classic Collisions Workshop – ACTUAL DELIVERED BENEFITS

- Immediate drop in Roof **Surface and Ceiling cavity** temperatures as evidenced from actual project **Temperature Data monitoring**
- Improved Occupancy comfort levels:
 - Immediate feedback from centre staff acknowledge the internal cooling effect of between 5-10°C cooler

PROJECT TEMPERATURE MONITORING

Temperature Data loggers were installed to monitor PRE and POST application conditions including

- ROOF SURFACE (underside)
- Upper Work Area Air Space

Data loggers recorded temperatures at 30 minute intervals form the period

* Start: 19.12.2009

❖ End: 25.01.2010

Bureau of Meteorology records for air temperature, wind speed & sunshine hours were accessed to correlate data for the purpose of like day comparisons

- 30.12.2009 (Before CoolRoof)
- 08.01.2010 (After CoolRoof)

were selected for specific 24 hour "like for like" comparison

Customer Endorsement

"The results from applying the coating were experienced immediately where worker comfort & productivity in the workshop area improved dramatically"

The benefits of CoolRoofs

Maximum Solar Reflection

Weathered Galv and Dark Coloured roofs absorb massive amounts of solar radiation which in-turn transmit heat into occupancy zones. CoolRoofs reflect heat energy in the first instance - before heat is absorbed, meaning insulation & cooling efficiencies are maximised

Reduced Cooling Costs

Less Heat penetration means lower cooling costs. Comparative studies identify cooling energy savings of 20-40% are possible using CoolRoof technology.

Improved Occupancy Comfort

In non-airconditioned facilities such as workshops and warehousing, cool roofs translate immediately to cooler working and warehousing facilities, improving productivity and stability of stored goods.

Lowers Carbon Footprint

Less use of airconditioning reduces power consumption and associated greenhouse gasses which is good for the environment and for you.

Further reading: Reducing Urban Heat Islands: Compendium of Strategies – US EPA, Geo-engineering, adaption and CO2 mitigation – Climate Progress US

InfraCOOL™...Colours that shield from the sun